

XVII РОССИЙСКАЯ КОНФЕРЕНЦИЯ ПОЛЬЗОВАТЕЛЕЙ СИСТЕМ ИНЖЕНЕРНОГО АНАЛИЗА MSC SOFTWARE. ФОРУМ MSC 2014

ПРИМЕНЕНИЕ MSC NASTRAN ДЛЯ ИССЛЕДОВАНИЙ КРАЕВЫХ ЭФФЕКТОВ В СЛОИСТЫХ КОМПОЗИТАХ

Дударьков Ю.И., <u>Левченко Е.А.</u>, Лимонин М.В.

КРИТЕРИИ РАЗРУШЕНИЯ КОМПОЗИТА

Safety factor - $\eta = \frac{1}{A}$, $A = max \left(\frac{\epsilon_1}{\epsilon_{1T}}, \left| \frac{\epsilon_1}{\epsilon_{1T}} \right|, \frac{\epsilon_2}{\epsilon_{2T}}, \left| \frac{\epsilon_2}{\epsilon_{2T}} \right|, \left| \frac{\epsilon_{12}}{\gamma_{12}} \right| \right) \ge 1$

Критерий максимальных напряжений

Критерий Хилла

Safety factor $-\eta = \frac{1}{\sqrt{A}}$, A =	$\left(\frac{\sigma_1^2}{X^2}\right)$	$-\frac{\sigma_1\sigma_2}{\chi^2}$	$+\frac{\sigma_2^2}{\gamma^2}$	$+\frac{T_{12}^2}{S_{12}^2}$)≥1
--	---------------------------------------	------------------------------------	--------------------------------	------------------------------	-----

Критерий Цая-Ву

$$A = \left(\frac{\sigma_1^2}{X_T X_C} + 2F_{12}\sigma_1\sigma_2 + \frac{\sigma_2^2}{Y_T Y_C} + \frac{\tau_{12}^2}{S_{12}^2} + \sigma_1 \left[\frac{1}{X_T} - \frac{1}{X_C} \right] + \sigma_2 \left[\frac{1}{X_T} - \frac{1}{X_C} \right] \right) \ge \tau_2$$

$$F_{12} = -0.5 \sqrt{\frac{1}{X_T X_C Y_T Y_C}}$$

Критерий Хофмана

Safety factor -
$$a\eta^2 + b\eta - 1 = 0$$

$$a = \frac{\sigma_1^2}{X_T X_C} - \frac{\sigma_1 \sigma_2}{X_T X_C} + \frac{\sigma_2^2}{Y_T Y_C} + \frac{\tau_{12}^2}{S_{12}^2} \quad b = \sigma_1 \left[\frac{1}{X_T} - \frac{1}{X_C} \right] + \sigma_2 \left[\frac{1}{X_T} - \frac{1}{X_C} \right]$$

 $Safety \; factor \; - \; \eta \!=\! \frac{1}{A} \; , \; A \!=\! max \! \left(\frac{\sigma_1}{X_T}, \left| \frac{\sigma_1}{X_C} \right|, \frac{\sigma_2}{Y_T}, \left| \frac{\sigma_2}{Y_C} \right|, \left| \frac{\tau_{12}}{S_{12}} \right| \right) \! \geq \! 1 \; .$

Критерий Хашина

$$\begin{split} & \text{Fibre failure - } \sigma_1 > 0 \Rightarrow \left(\frac{\sigma_1}{X_T}\right)^2 + \left(\frac{\tau_{12}}{S_{12}}\right)^2 = 1, \ \sigma_1 < 0 \Rightarrow \left(\frac{\sigma_1}{X_C}\right)^2 \\ & \text{Matrix failure - } \sigma_2 > 0 \Rightarrow \left(\frac{\sigma_2}{Y_T}\right)^2 + \left(\frac{\tau_{12}}{S_{12}}\right)^2 = 1, \ \sigma_1 < 0 \Rightarrow \left(\frac{\sigma_2}{2S_{23}}\right)^2 + \left[\frac{Y_2}{2S_{23}} - 1\right]\frac{\sigma_2}{Y_C} + \left(\frac{\tau_{12}}{S_{12}}\right)^2 = 1 \\ & \text{Interlaminare failure - } \left(\frac{\sigma_3}{Z_T}\right)^2 + \left(\frac{\tau_{23}}{S_{23}}\right)^2 + \left(\frac{\tau_{31}}{S_{31}}\right)^2 = 1 \end{split}$$

Fibre failure -

$$\sigma_1 \ge 0 \implies A = \frac{\sigma_1}{X_T}, \ \sigma_1 \le 0 \implies A = \frac{|\sigma_1|}{X_C}$$

Моды разрушения матрицы

Matrix failure -

$$\begin{split} & \text{Mode } \textbf{A} \\ & \sigma_2 \geq 0, \ \theta_{fr} = 0 \Rightarrow A = \frac{1}{S_{12}} \Bigg[\sqrt{ \left(\frac{S_{12}}{Y_T} - p_{12}^{(-)} \right)^2 \sigma_2^2 + \tau_{21}^2} + p_{12}^{(-)} \sigma_2 \Bigg] = 1 \\ & \text{Mode } \textbf{B} \\ & \sigma_2 < 0, \ \theta_{fr} = 0 \Rightarrow A = \frac{1}{S_{12}} \Bigg[\sqrt{\tau_{21}^2 + (p_{12}^{(-)} \sigma_2)^2} + p_{12}^{(-)} \sigma_2 \Bigg] = 1 \\ & \text{Mode } \textbf{C} \\ & \sigma_2 < 0, \ \theta_{fr} \neq 0 \Rightarrow A = \frac{\tau_{21}^2}{4(S_{12} + p_{12}^{(-)} Y^A)^2} \frac{Y_C}{(-\sigma_2)} + \frac{(-\sigma_2)}{Y_C} = 1 \end{split}$$

ЭКСПЕРИМЕНТАЛЬНОЕ ПОДТВЕРЖДЕНИЕ КРИТЕРИЕВ РАЗРУШЕНИЯ

разрушения

Расчетные и экспериментальные данный для материала СҮСОМ 977-2-IM													
(+45/0/-45/0/0/90/0/0/-45/0/+45) ₃													
Тип	σ	Hill			Tsay			Hashin			Puck		
нагружения	(kgf/mm ²)	σ_1	σ_2	σ_{avg}	σ_1	σ_2	σ_{avg}	σ_1	σ2	σ_{avg}	σ_1	σ_2	σ_{avg}
Растяжение	135	108.3	108.3	108.3	97.6	161.8	129.7	125.8	161.8	143.8	125.8	161.8	143.8
Сжатие	83.2	93.8	94.6	94.2	90.9	94.8	92.9	94.8	94.8	94.8	94.8	94.8	94.8

Расчетные и экспериментальные данный для материала КМКУ-2М.120.Э01.45 (0/0/0/45/-45/0/0/0/45/-45/0/0/90)_s

Тип	σ	Hill			Tsay			Hashin			Puck		
нагружения	(kgf/mm ²)	σ	σ2	σ_{avg}	σ	σ2	σ_{avg}	σ	σ2	σ_{avg}	σ	σ2	σ_{avg}
Растяжение	50.5	43.0	59.7	51.4	43.1	60.0	51.6	45.5	60.0	52.8	45.3	60.2	52.7
Сжатие	67.2	58.5	60.0	59.3	55.9	60.0	58.0	60.0	60.0	60.0	60.2	60.2	60.2
Сдвиг	14.2	11.7	17.1	14.4	11.0	17.5	14.3	16.1	17.5	16.8	16.1	17.5	16.8

•обработку расчетных данных рекомендуется вести по средним между первичным и вторичным напряжениями разрушения пакета.

• при наличии экспериментальных данных на простые виды нагружения следует выбирать тот критерий, который наиболее полно согласуется имеющимися данными

ВАЛИДАЦИЯ РАСЧЕТНЫХ МОДЕЛЕЙ ДЛЯ ИССЛЕДОВАНИЯ 🥬 🌶 ۷ УСТОЙЧИВОСТИ И НЕСУЩЕЙ СПОСОБНОСТИ КОМПОЗИЦИОННЫХ СТРУКТУР

РАСЧЕТНОЕ СОПРОВОЖДЕНИЕ СТАТИЧЕСКИХ ИСПЫТАНИЙ ПРОТОТИПА КЕССОНА КРЫЛА САМОЛЕТА ИЗ КМ

Деформации в верхней панели (сравнение расчета и эксперимента)

Деформации в верхней панели (сравнение расчета и эксперимента)

Распределение напряжений в нижней панели

Прогибы лонжеронов (сравнение расчета и эксперимента)

отделение статической и тепловой прочности

Распределение напряжений в пакете: $\tau_{vz}~\sigma_z$

0.0⁴ 0.8 1.6 2.4 3.0 3.6 z/h 0.5 2/h 0.5 2

Образование эффекта свободной кромки

A-A

КЭМ композита для изучения эффекта

КРАЕВЫЕ ЭФФЕКТЫ В СЛОИСТЫХ КОМПОЗИТАХ

ЦЕНТРАЛЬНЫЙ АЭРОГИДРОДИНАМИЧЕСКИЙ ИНСТИТУТ ИМЕНИ ПРОФ. Н.Е. ЖУКОВСКОГО

ИМЕНИ ПРОФ. Н.Е. ЖУКОВСКОГО

образцов на растяжение (Crossman, F.W., Analysis of Delamination // Proceedings of a Workshop on "Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures" - 1982 - P. 191-240)

Вид разрушения и значения разрушающих напряжений существенным образом зависят от порядка укладки монослоев

[+45; -45; 0; 90], – с расслоением

отделение статической и тепловой прочности

[0; +45; -45; 90], - с расслоением

РАСЧЕТНАЯ МОДЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ КРАЕВЫХ ЭФФЕКТОВ

ИМЕНИ ПРОФ. Н.Е. ЖУКОВСКОГО

- материал углепластик СҮСОМ
- толщина монослоя 0.2 мм
- пакет состоит из 8 монослоев
- характерный размер элементов целевой зоны 0.066 мм
- элементы типа HEX8
- размерность модели ≈100 000 узлов расчетной сетки

Распределение расслаивающих напряжений О,

КРАЕВОЙ ЭФФЕКТ В ПАНЕЛИ С УКЛАДКОЙ МОНОСЛОЕВ (45/0/-45/0/0/90/0/0/-45/0/45)₃

ОТДЕЛЕНИЕ СТАТИЧЕСКОЙ И ТЕПЛОВОЙ ПРОЧНОСТИ

Максимальный уровень расслаивающих напряжений достигается в углах панели: σ ,≈ 14%(σ ,)

ЦЕНТРАЛЬНЫЙ АЭРОГИДРОДИНАМИЧЕСКИЙ ИНСТИТУТ

среднее экспериментальное напряжение разрушения- 59 кгс/мм² расчетное напряжение разрушения- 63 кгс/мм²

КРАЕВОЙ ЭФФЕКТ НА СВОБОДНОЙ КРОМКЕ ОТВЕРСТИЯ

Критерий расслоения Хашина-Ротема

$$\left(\frac{\sigma_3}{Z_{\rm T}}\right)^2 + \left(\frac{\tau_{23}}{S_{23}}\right)^2 + \left(\frac{\tau_{31}}{S_{31}}\right)^2 = 1$$

прочность панели без учета краевого эффекта: $\tau_0 = 14$ кгс/мм² прочность панели с учетом краевого эффекта: $\tau_0 = 5.5$ кгс/мм²

РАСЧЕТНАЯ МОДЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ КРАЕВЫХ ЭФФЕКТОВ НА СВОБОДНОЙ КРОМКЕ ОТВЕРСТИЯ

Распределение расслаивающих напряжений $\tau_{\theta z}$

- материал углепластик СҮСОМ
- толщина монослоя 0.2 мм
- пакет состоит из 4 монослоев (45/-45)s
- характерный размер элементов целевой зоны 0.035 мм
- элементы типа HEX8 и WEDGE6
- размерность модели ≈500 000 узлов расчетной сетки

СПОСОБЫ СНИЖЕНИЯ КРАЕВЫХ ЭФФЕКТОВ

- усиление торцов экспериментальных панелей
- применение специальной оснастки, препятствующей расслоению торцов
- нанесение дополнительного изотропного слоя на свободные кромки
- локальное изменение структуры пакета в зоне свободных кромок

